

# 12LEX1300Nd

**LOW FREQUENCY TRANSDUCER LEX Series** 



- High power handling and low distortion 12" subwoofer
- Exclusive Malt Cross® Technology Cooling System
- Low power compression losses
- High sensitivity: 96 dB (1W / 1m)
- FEA optimized neodymium magnetic circuit
- · Aluminium demodulating ring
- Ultra low air noise
- Optimized linear behaviour

- Weatherproof cone with treatment for both sides
- Double silicone spider
- 4" DUO double layer in/out voice coil
- Extended controlled displacement: X<sub>max</sub> ± 11 mm
- 65 mm peak-to-peak excursion before damage
- · Optimized for direct radiation and band-pass subwoofer applications





# TECHNICAL SPECIFICATIONS

| Nominal diameter                   | 300 mm                 | 12 in                  |
|------------------------------------|------------------------|------------------------|
| Rated impedance                    |                        | 8 Ω                    |
| Minimum impedance                  |                        | 6,8 Ω                  |
| Power capacity 1                   | 1.300 W <sub>AES</sub> |                        |
| Program power <sup>2</sup>         |                        | 2.600 W                |
| Sensitivity                        | 96 dB 1W /             | 1m @ Z <sub>N</sub>    |
| Frequency range                    | 45 -                   | - 1.500 Hz             |
| Recom. enclosure                   |                        | $V_{b} = 45  I$        |
| (Bass-reflex design)               | F                      | = <sub>b</sub> = 50 Hz |
| Voice coil diameter                | 101,6 mm               | 4 in                   |
| BI factor                          |                        | 26,4 N/A               |
| Moving mass                        |                        | 0,125 kg               |
| Voice coil length                  |                        | 28 mm                  |
| Air gap height                     |                        | 14 mm                  |
| X <sub>damage</sub> (peak to peak) |                        | 65 mm                  |
|                                    |                        |                        |

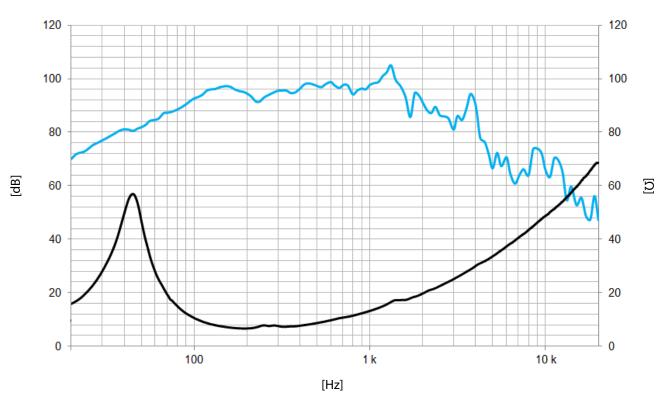
# THIELE-SMALL PARAMETERS 3

| Resonant frequency, f <sub>s</sub>                         | 45 Hz                |
|------------------------------------------------------------|----------------------|
| D.C. Voice coil resistance, R <sub>e</sub>                 | 5 Ω                  |
| Mechanical Quality Factor, Q <sub>ms</sub>                 | 4,2                  |
| Electrical Quality Factor, Qes                             | 0,25                 |
| Total Quality Factor, Q <sub>ts</sub>                      | 0,24                 |
| Equivalent Air Volume to C <sub>ms</sub> , V <sub>as</sub> | 43 I                 |
| Mechanical Compliance, C <sub>ms</sub>                     | 100 $\mu$ m / N      |
| Mechanical Resistance, R <sub>ms</sub>                     | 8,4 kg / s           |
| Efficiency, η <sub>0</sub>                                 | 1,5 %                |
| Effective Surface Area, S <sub>d</sub>                     | 0,055 m <sup>2</sup> |
| Maximum Displacement, X <sub>max</sub> ⁴                   | 11 mm                |
| Displacement Volume, V <sub>d</sub>                        | 605 cm <sup>3</sup>  |
| Voice Coil Inductance, L <sub>e</sub>                      | 1,3 mH               |
|                                                            |                      |

### Notes

<sup>&</sup>lt;sup>1</sup> The power capaticty is determined according to AES2-1984 (r2003) standard.

<sup>&</sup>lt;sup>2</sup> Program power is defined as power capacity + 3 dB.

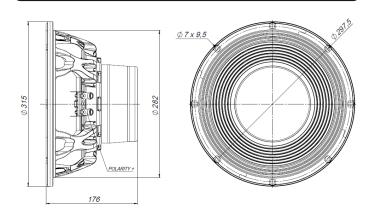

<sup>&</sup>lt;sup>3</sup> T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

 $<sup>^4</sup>$  The  $X_{max}$  is calculated as  $(L_{VC} - H_{aq})/2 + (H_{aq}/3.5)$ , where  $L_{VC}$  is the voice coil length and  $H_{aq}$  is the air gap height.



# 12LEX1300Nd

LOW FREQUENCY TRANSDUCER
LEX Series




Note: Frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

# **MOUNTING INFORMATION**

| Overall diameter           | 315 mm   | 12,4 in              |
|----------------------------|----------|----------------------|
| Bolt circle diameter       | 297,5 mm | 11,7 in              |
| Baffle cutout diameter:    |          |                      |
| - Front mount              | 282 mm   | 11,1 in              |
| Depth                      | 176 mm   | 6,9 in               |
| Volume displaced by driver | 3,5 I    | 0,12 ft <sup>3</sup> |
| Net weight                 | 8,3 kg   | 18,3 lb              |
| Shipping weight            | 9,0 kg   | 19,8 lb              |

# **DIMENSION DRAWING**

