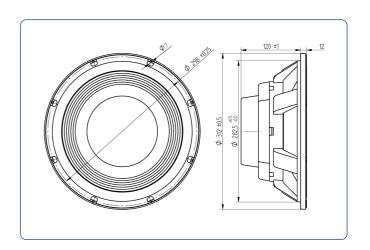


PROFESSIONAL LOUDSPEAKERS www.beyma.com

12SW1300Nd

LOW FREQUENCY TRANSDUCER SW1600Nd series

KEY FEATURES


- HELICEX® cooling technology
- 1200W AES power handling capacity
- High sensitivity: 96dB @ 2.83v
- Low resonant frequency: 45Hz
- Extended controlled displacement: Xmax ± 10 mm
- Massive mechanical displacement capability: Xpp 60mm
- Designed with MMSS technology
- 4" DUO double inner/outer voice coil winding
- CONEX Spider

TECHNICAL SPECIFICATIONS

Nominal diameter	300mm. 12 in.
Rated impedance	8 ohms
Minimum impedance	6.2 ohms
Power capacity*	1200 w AES
Program power	2400 w
Sensitivity	96 dB $2.83v @ 1m @ 2\pi$
Frequency range	25 - 1800 Hz
Maximum Recom. Frequency	200 Hz
Recom. enclosure vol.	12 / 60 I 0.7 / 2.24 ft. ³
Voice coil diameter	100 mm. 4 in.
Magnetic assembly weight	4.62 kg. 10.16 lb.
BL factor	25.3 N / A
Moving mass	0.118 kg.
Voice coil length	25 mm
Air gap height	14 mm
X damage (peak to peak)	60 mm

DIMENSION DRAWINGS

THIELE-SMALL PARAMETERS**

Resonant frequency, fs	45 Hz
D.C. Voice coil resistance, Re	4.9 ohms
Mechanical Quality Factor, Qms	12.07
Electrical Quality Factor, Qes	0.27
Total Quality Factor, Qts	0.26
Equivalent Air Volume to Cms, Vas	451
Mechanical Compliance, Cms	105.5 μ m / N
Mechanical Resistance, Rms	2.77 kg/s
Efficiency, ηο (%)	1.47
Effective Surface Area, Sd (m²)	0.055m^2
Maximum Displacement, Xmax***	10 mm
Displacement Volume, Vd	550 cm ³
Voice Coil Inductance, Le @ 1 kHz	3.25 mH

MOUNTING INFORMATION

Overall diameter	312 mm.	12.28 in.
Bolt circle diameter	298 mm.	11.73 in.
Baffle cutout diameter:		
- Front mount	283 mm.	11.14 in.
- Rear mount	280 mm.	11.02 in.
Depth	132 mm.	5.20 in.
Volume displaced by driver	4 l.	0.14 ft. ³
Net weight	7.2 kg.	15.84 lb.
Shipping weight	8 kg.	17.6 lb.

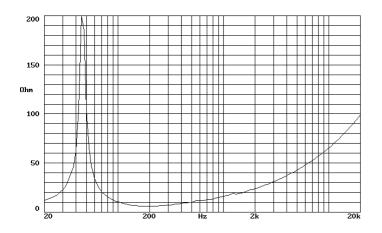
Notes:

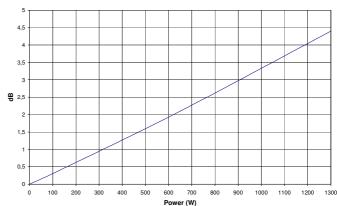
*The power capacity is determined according to AES2-1984 (r2003) standard.

Program power is defined as the transducer's ability to handle normal music program material.

**T-S parameters are measured after an exercise period using a preconditioning power test.

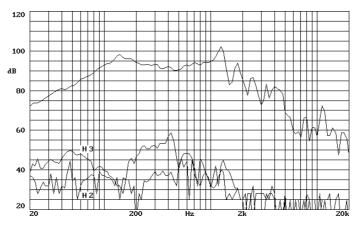
The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).


***The Xmax is calculated as (Lvc - Hag)/2 + Hag/3.5, where Lvc is the voice coil length and Hag is the air gap height.


12SW1300Nd

LOW FREQUENCY TRANSDUCER SW1600Nd series

FREE AIR IMPEDANCE CURVE



POWER COMPRESSION LOSSES

Note: Power Compression Losses were calculated after 5 minutes period applying a pink noise signal filtered between 25 and 200 Hz.

FREQUENCY RESPONSE AND DISTORTION

Note: on axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1w @ 1m.