12NMB420

Key Features

$100,5 \mathrm{~dB}$ SPL $1 \mathrm{~W} / 1 \mathrm{~m}$ average sensitivity 65 mm ($2,5 \mathrm{in}$) Interleaved Sandwich Voice coil (ISV) 300 W AES power handling
Single Demodulating Ring (SDR) for lower distortion
Copper ring for lower intermodulation distortion
External neodymium magnet assembly
Weather protected cone and plates for outdoor usage
Specially designed for compact two way systems

General Description

The 12 NMB420 is a 12 inch neodymium mid-bass transducer designed for professional monitoring and sound reinforcement. At the heart of this speaker is a carefully engineered drive system, designed to assure linear, low-distortion output, high power capability and efficient heat transfer. The most extended bass, lowest distortion and best control is usually realized in properly designed vented enclosures. In such designs, the vent, or port, actually provides the lowest octave of output. The excursion of the 12 NMB420 at these frequencies is much reduced compared to sealed enclosures, directly reducing harmonic distortion and the possibility of speaker bottoming. Typical vented enclosure sizes range from 40 lit up with tunings from 50 to 60 Hz . Low frequency equalization is suggested and normally added, in order to improve the bass output if the system will work without subwoofer. The recommended amplifier size ranges from 250 up to 500 W .
The onboard copper sleeve positioned in the gap and coupled with SDR (Single Demodulating Ring) results in optimum balance for reproducing instantaneous peaks on mid frequencies, reducing intermodulation distortion.
The external magnet typology neodymium magnet assembly assures high flux concentration, low power compression and excellent heat exchange since the external magnet configuration is considerably more efficient than the traditional under - pole magnet topology. This allows to obtain high levels of force factor and power handling with a power to weight ratio at the upper level.
The high quality paper cone has a smooth, curvilinear profile design that eliminates bell-mode resonances within the intended frequency range. This is carried by a specially treated and damped double triple-roll linen suspension designed to control excursion maintaining the piston action linearity.
The 12NMB420 employs a 64 mm Interleaved Sandwich Voice coil (ISV), in which a high strength fiberglass former carries windings on both the outer and inner surfaces to achieve a mass balanced coil, resulting in an extremely linear motor assembly with reduced tendency to eccentric behavior when driven hard.

GENERAL SPECIFICATIONS

NOMINAL DIAMETER	300 mm (12 in)
RATED IMPEDANCE	80 hm
AES POWER (1)	300 W
PROGRAM POWER (2)	450 W
PEAK POWER (3)	900 W
SENSITIVITY (4)	$100,5 \mathrm{~dB}$
FREQUENCY RANGE (5)	$55 \div 6000 \mathrm{~Hz}$
POWER COMPRESSION @-10DB (6)	$0,9 \mathrm{~dB}$
POWER COMPRESSION @-3DB	$2,2 \mathrm{~dB}$
POWER COMPRESSION @FULL POWER	$2,9 \mathrm{~dB}$
MAX RECOMM. FREQUENCY	2000 Hz
RECOMM. ENCLOSURE VOLUME	$50 \div 100$ It. (1,77 $\div 3,53$ cuft)
MINIMUM IMPEDANCE	$6,90 \mathrm{hm}$ at $25^{\circ} \mathrm{C}$
MAX PEAK TO PEAK EXCURSION	$22 \mathrm{~mm}(0,87 \mathrm{in})$
VOICE COIL DIAMETER	$65 \mathrm{~mm}(2,5$ in)
VOICE COIL WINDING MATERIAL	aluminum
SUSPENSLON	Triple roll, Polycotton
CONE	Curvilinear, Paper

THIELE SMALL PARAMETERS (7)

Fs	53 Hz
Re	$5,2 \mathrm{hm}$
Sd	$0,053 \mathrm{sq} . \mathrm{mt}$. ($82,15 \mathrm{sq} . \mathrm{in})$.
Qms	3,6
Qes	0,3
Qts	0,28
Vas	$105 \mathrm{It} .(3,71 \mathrm{cuft})$
Mms	$33,5 \mathrm{gr} .(73,95 \mathrm{lb})$
BL	$13,9 \mathrm{Tm}$
Linear Mathematical Xmax (8)	$\pm 4 \mathrm{~mm}(\pm 0,16 \mathrm{in})$
Le (1kHz)	$0,2 \mathrm{mH}$
Ref. Efficiency $1 \mathrm{W@} @ 1 \mathrm{~m}$ (half space)	99 dB

MOUNTING INFORMATIONS

Overall diameter	$315 \mathrm{~mm}(12,40 \mathrm{in})$
N. of mounting holes	8
Mounting holes diameter	$7,15 \mathrm{~mm}(0,28 \mathrm{in})$
Bolt circle diameter	$296-300 \mathrm{~mm}(11,65-11,8 \mathrm{in})$
Front mount baffle cutout \varnothing	$282 \mathrm{~mm}(11,10 \mathrm{in})$
Rear mount baffle cutout \varnothing	$282 \mathrm{~mm}(11,10 \mathrm{in})$
Total depth	$127 \mathrm{~mm}(5,00 \mathrm{in})$
Flange and gasket thickness	$11,5 \mathrm{~mm}(0,45 \mathrm{in})$
Net weight	$2.8 \mathrm{~kg} \mathrm{(6.2} \mathrm{bb)}$
Shipping weight	$3.5 \mathrm{~kg} \mathrm{(7.7lb)}$
CardBoard Packaging	$332 \times 332 \times 184 \mathrm{~mm}(13,07 \times 13,07 \times$
dimensions	$7,24 \mathrm{in})$

FREQUENCY RESPONSE CURVE OF 12NMB420 MADE ON 18 LIT. ENCLOSURE TUNED 6OHZ IN FREE FIELD (4PI) ENVIRONMENT. ENCLOSURE CLOSES THE REAR OF THE DRIVER. THE THIN LINE REPRESENTS 45 DEG. OFF AXIS FREQUENCY RESPONSE

FREE AIR IMPEDANCE MAGNITUDE CURVE

NOTES

(1) AES power is determined according to AES2-1984 (r2003) standard
(2) Program power rating is measured in 50 lit enclosure tuned at 60 Hz using a $70-3000 \mathrm{~Hz}$ band limited pink noise test signal with 50\% duty cycle, applied for 2 hours.
(3) The peak power rating represents the maximum permitted instantaneous peak power level over a maximum period of 10 ms which will be withstood by the loudspeaker without damage. (4) Sensitivity represents the averaged value of acoustic output as measured on the forward central axis of cone, at distance 1 m from the baffle panel, when connected to $2,83 \mathrm{~V}$ sine wave test signal swept between 500 Hz and 2500 Hz with the test specimen mounted in the same enclosure as given for (1) above.
(5) Frequency range is given as the band of frequencies delineated by the lower and upper limits where the output level drops by 10 dB below the rated sensitivity in half space environment.
(6) Power compression represents the loss of sensitivity for the specified power, measured from $100-1000 \mathrm{~Hz}$, after a 5 min pink noise preconditioning test at the specified power.
(7) Thiele - Small parameters are measured after the test specimen has been conditioned by 300W AES power and represent the expected long term parameters after a short period of use. (8) Linear Math. Xmax is calculated as $(\mathrm{Hvc}-\mathrm{Hg}) / 2+\mathrm{Hg} / 4$ where Hvc is the coil depth and Hg is the gap depth.

