DRIVER N850 Professional High Frequency Transducer

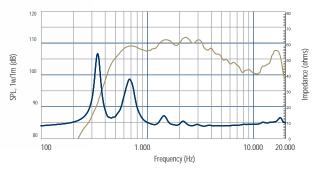
The N850 is a high quality 3.0-inch diaphragm compression driver with a 2 inch exit. The diaphragm is precision formed from .05 mm thick pure titanium. The suspension is based on a Mylar vented design. The front aluminum adaptor guarantee a very smooth transition from the phase plug to the 2" output interface.

PART NUMBER 15120058

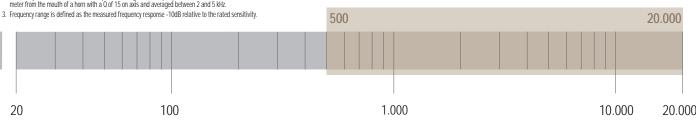
Features

- 3-inch Diaphragm, 2.0-inch Exit Throat Titanium Compression Driver
- 180 watt Continuous program power handling
- Frequency range: 500Hz 20kHz
- 3-slot, optimized geometry phase plug
- Aluminum rear cover and front adaptor
- Copper inductance ring for extended response
- Vented suspension system

Applications


The N850 is a compression driver for professional applications, from high power 2-way systems to multipleway long throw systems and large format arrays. Very good linearity and efficiency in combination with RCF H6040 horn (60 X 40 degrees dispersion).

General Specifications		
Exit Throat Diameter	50.8/ 2	mm/inch
Rated Impedance	8	ohm
Power handling capacity ¹		
continuous program above 1.2 kHz	180	Watt
AES above 1 kHz	90	Watt
Sensitivity 1 W, 1 M, on axis, on horn ²	109	dB
Frequency Range ³	500 - 20000	Hz
Diaphragm Material	Pure Titanium	
Suspension Material	Mylar	
Suspension Design	Radial	
Minimum Impedance	8.8 ohm at 3500 Hz	
Voice Coil Diameter	74.4/3.0	mm/inch
Voice Coil Material	Edgewound aluminum	
Voice Coil Former Design	Straight -Kapton	
Number of layers	1 - Outside	
BL Factor	12	T · m
Flux Density	1.85	T
Phase Plug Design	3 slot	
Phase Plug Material	Composite	
Magnetics	Ceramic	
Voice Coil Demodulation	Copper ring	


Mounting Information		
Overall Diameter	180/.1	mm/inch
Overall Height	95/3.7	mm/inch
Mounting		
4 x 6 mm threaded holes at 90 deg.	101.6/4.0	mm/inch
Net Weight	4.7/10.3	kg/Lbs
Shipping Weight	5/11.0	kg/Lbs

Frequency response and electrical impedance curve of the compression driver mounted on 90°H x 40°V horn with

Notes to Specifications

- Continuos pink noise power ratings are derived from suggested AES standards sending a pink noise signal having a 6 dB crest factor with a high pass filter set at the specified lower limiting frequency for two hours. Continuos program power is a conservative power rating for reproduction of typical audio program material.
 Sensitivity measurement is based on pink noise signal with input power of 1 watt and measured at 1 meter from the mouth of a horn with a 0 of 15 on axis and averaged between 2 and 5 kHz.

